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We present an improved version of the program LEA developed to design organic molecules.
Rational drug design involves finding solutions to large combinatorial problems for which an
exhaustive search is impractical. Genetic algorithms provide a tool for the investigation of
such problems. New software, called LEA3D, is now able to conceive organic molecules by
combining 3D fragments. Fragments were extracted from both biological compounds and known
drugs. A fitness function guides the search process in optimizing the molecules toward an
optimal value of the properties. The fitness function is build up by combining several
independent property evaluations, including the score provided by the FlexX docking program.
One application in de novo drug design is described. The example makes use of the structure
of Mycobacterium tuberculosis thymidine monophosphate kinase to generate analogues of one
of its natural substrates. Among 22 tested compounds, 17 show inhibitory activity in the
micromolar range.

Introduction

The process of designing new molecules possessing
desired physical, chemical, and biological properties is
an important and difficult problem in the chemical,
material, and pharmaceutical industries. The tradi-
tional approaches involve a laborious and expensive
trial-and-error procedure. To create new molecules with
the desired profiles, hundreds of molecules may be
synthesized and tested in many biological test systems
with the objective of finding a class that is suitable for
development as a drug. Alternatively, experimental and
virtual screenings might be performed to mine huge
libraries of molecules in order to identify lead com-
pounds.1 Usually, such procedures identify micromolar
ligands that have to be improved.

Computer-aided drug design (CADD) is currently
developed to increase the efficiency of the drug discovery
process. It can form a valuable partnership with experi-
ments by providing estimates when experimental ap-
proaches are difficult or expensive and by coordinating
the experimental data available. These in silico methods
encompass pharmacophoric model identification or QSAR
(quantitative structure-activity relationship) analysis.
But these can only be applied to the “forward” problem,
which requires the computation of physical, chemical,
and biological properties from the molecular structure
of known active molecules.2 Indeed, much less attention
has been paid to the “inverse” problem, which requires
the identification of the appropriate molecular structure
given the desired physicochemical properties.

On the contrary, de novo drug design programs can
identify novel molecular structures that are predicted
to fit the active site of a target protein. In fact, some of
them already have been applied to the lead generation
for actual drug targets.3-7 For example, evolutionary de
novo design by the program TOPAS led to the identi-
fication of a new molecular scaffold that served as a lead
structure candidate for a novel Kv1.5 blocking agent.8
In another example, the program LUDI was used to
generate ideas for the de novo design of new FKBP-12
ligands based on the core structure of FK506.9 To
achieve the de novo lead compounds, several computer
programs or methodologies have been proposed, includ-
ing LEGEND,10 LUDI,11 SPROUT,12 HOOK,13 Grow-
Mol,14 PRO-LIGAND,15 CONCERTS,16 and LeapFrog.17

Compared to virtual screening by docking of known
molecules in compound databases, de novo ligand design
programs can generate novel active structures fitting
the active site of the target protein while efficiently
searching the whole chemistry space. But one has to
solve a huge combinatorial and nonlinear structure-
property correlation problem for which an exhaustive
search is impractical.

Among structure-based de novo drug design pro-
grams, LeapFrog,17 ADAPT,18 LigBuilder,19 PRO-
LIGAND,15 TOPAS,8 and the one by Blaney et al.20

apply genetic algorithms (GA) to the design of new
molecular structures. The essence of a GA lies in
allowing a dynamically evolving population of molecules
to be gradually improved by competing for the best
performance or fitness. Many studies have shown that
GAs are able to locate optimal solutions for many
desired target constraints and are able to discover a
diverse population of near-optimal solutions (e.g., sev-
eral new families of structures).21

De novo design programs try to assemble molecules
by using some building blocks, which could be either
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atoms or chemical fragments. Our previous version,
LEA, used atom-based construction by using the SMILES
line notation.22,23 Usage of single atoms as building
blocks will give the maximum diversity, because all
organic structures can be generated by assembling
atoms. However, according to our own experience in
using LEA, atom-based construction suffers from gen-
erating unreasonable structures. In addition, more steps
are required to build up the whole molecule through an
atom by atom process. We have developed a new
fragment-based algorithm: LEA3D.

For this purpose, we selected 7621 drugs from the
Comprehensive Medicinal Chemistry database (CMC
from MDL Information Systems, May 2003) and 7282
compounds from the LIGAND database of KEGG (http://
www.genome.ad.jp/dbget/ligand.html). The last one has
been added because the hit rates in high-throughput
screens determined for natural product collections are
often dramatically higher than the rates found for large
classical libraries.24,25 We computationally dissected
them into rings and acyclic parts. This resulted in
approximately 8000 fragments that led potentially to a
virtual size library of 1014 (assuming four as the
maximum number of building blocks a molecule can
combine). Despite the huge size of the virtual library,
it is still smaller than the “virtual chemistry space”
evaluated to 1060 within a molecular weight (MW) of
less than 500.26 However, the space to search remains
immense and a GA avoids the trap of fully enumerating
the virtual library.

The new version of the program LEA, LEA3D, takes
advantage of the new fragment library to design mol-
ecules. It is hoped that LEA3D designs are both chemi-
cally feasible and have favorable druglike properties,
since the fragments were originally obtained from
known bioactive molecules. Furthermore, LEA3D can
build up molecules under the structural constraints of
the target protein in order to fill optimally the active
site of the receptor. The protein-ligand binding interac-
tions are evaluated by using the FlexX docking pro-
gram.27 The derived score guides the design of the
putative ligands of the following generation (optimiza-
tion). FlexX is also a fragment-based docking method
that divides the ligand into separate portions and uses
an incremental construction algorithm. Usually the
fragments selected by FlexX are the same as the
building blocks used to create the molecule by LEA3D.
Furthermore, combining two fragment-based approaches
for designing and scoring molecules is an advantage.
FlexX allows the user to dock a molecule (or a fragment)
onto a reference substructure, molecule, or fragment
already placed into the active site. In this way, we can
both constrain a crucial fragment into the molecule
designed by LEA3D (to maintain the affinity with the
receptor) and request FlexX to superimpose it onto the
reference within the receptor. The calculation of the
docking score is highly accelerated and the docking
placement may be improved.

To evaluate the new method, LEA3D was applied to
the binding site of the thymidine monophosphate kinase
of Mycobacterium tuberculosis (TMPKmt). When the
structure of the target protein is available, the process
of lead generation and optimization can be profoundly
influenced and speeded, particularly when the three-

dimensional structure of the protein-ligand complex is
available, as is the case for TMPKmt. Results of the
virtual screening will be presented and the biological
evaluation of the selected molecules will be discussed.

Methods

Genetic Algorithm. GAs are inspired by natural
selection in evolution.28 GAs approach the optimum of
a given function in the same way nature selects the
individual fittest to the environment. The genetic
algorithm vocabulary is adopted from natural genetics.
Populations and generations consist of a set of individu-
als, also referred to as chromosomes or genotypes. A
population of individuals evolves through selection of
various mutations of the individuals and recombination
between individuals. A GA is usually implemented
using the following procedure: evaluate the fitness of
all the individuals in the population; create a new
population by performing operations such as crossover
(fitness-proportionate reproduction) and mutation on
the individuals whose fitness has just been measured;
discard the old population and iterate using the new
population. One cycle of this loop is referred to as a
generation. The first generation (generation 0) usually
operates on a population of randomly generated indi-
viduals (see Figure 1). From there, the genetic opera-
tions, in concert with the fitness measure, operate to
improve the population. The GA uses a blind search
strategy, requiring no knowledge of the properties of the

Figure 1. General flowchart for a genetic algorithm. An initial
population of candidate solutions is generated, usually, by
random process. The fitness of each candidate is evaluated via
a fitness function (or score), which takes as input a candidate
solution and returns a numeric score. Selection criteria are
applied to choose candidates on the basis of their fitness score
for breeding. Breeding functions (crossover and mutation) are
applied to produce new solutions, which replace the parent
solutions. The cycle (or generation g) continues until conver-
gence criteria is met (usually, solutions are no more improved).
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function to be optimized, thus enabling the algorithm
to be applied to a variety of optimization problems from
robot behavior29 to drug design.30-32

The Molecular Representation. LEA and LEA3D
use a GA to explore the molecular structure space. The
character string of the chromosome is used to encode
the values for different parameters being optimized as
well as to encode a molecule. LEA and LEA3D differ
significantly in this way. In LEA, we used a concept of
molecular assembly encoded in SMILES line notation,
which is useful for communication between chemistry
softwares and storage. However, its manipulation by
crossover and mutation operators is very fastidious and
the generated molecules are often difficult to synthesize.
In LEA3D, the molecular assembly is a linear combina-
tion of one to five fragments and each fragment is
represented by a number (see Figure 2). Although
fragment-based notation cannot code for all organic
structures, its covering space of structures is still huge.
Moreover, it speeds up the ligand construction and
limits the number of unrealistic molecules. Each gener-
ated molecule is optimized by using the software CO-
RINA that provides one to four conformers (user-defined
number). This conformer search is crucial for ring
systems, which are not flexible during a FlexX docking
calculation.

Fragment Library. Molecular fragments found in
successful drugs are more likely to be “druglike” in a
general sense (usually satisfying the “rule-of-five” de-
vised by Lipinski and co-workers and not possessing
reactive functional groups) than random molecules.33

Our fragment library has been constructed upon the

8474 drugs from the CMC and 7434 “biomolecules” from
the LIGAND database of KEGG. Our first task was to
identify and remove nonorganic molecules and to re-
move the counterion of salts from databases. Then,
three-dimensional structures were generated by CO-
RINA and only structures converted to 3D were kept.34

Thereafter, the CMC database had 7621 remaining
entries and the KEGG database had 7282 remaining
entries. Then, molecules have been dissociated into
single rings, fused rings, and acyclic parts (see Figure
3 and Table 1).

Comparisons of the two databases show that drugs
are segmented into more fragments than biomolecules:
7621 drug molecules give 50 617 fragments (664%) and
7282 biomolecules give 41 208 fragments (565%). On
average, a drug molecule is composed of 6.6 fragments
(1.3 single ring, 0.5 fused ring, and 4.8 acyclic groups)
and a biomolecule is composed of 5.6 fragments (0.9
single ring, 0.5 fused ring, and 4.2 acyclic groups).

Both databases show some fragment redundancy:
only 5274 (10.4%) of 50 617 are unique for drug mol-
ecules and 4142 (10%) of 41 208 are unique for biomol-
ecules. The proportion of unique fused ring system in
the “biofragment” database is larger (45% of 4142) than
in the drug fragment database (34% of 5274). Con-
versely, the proportion of unique acyclic groups in the
drug fragment database is larger (47% of 5274) than in
biofragment database (36% of 4142).

Analysis of fragment families showed that the “bio-
database” contains more unique fused ring systems
(three fused rings and above, 16.4% of 7282) than the
drug database (12.5% of the 7621). On the contrary,

Figure 2. Examples of molecules with their 3D, SMILES line, and fragment-based representation. Mol_a and Mol_b are combined
to produce one offspring by the mean of a crossover operation. Mol_c is modified by the “cyclization” mutation operator. (a) 3D
representation of the three molecules. The lines which cut Mol_a and Mol_b represent the position where the molecule will be
split into two portions before the recombination. The arrow above Mol_c indicates where the cyclization will occur. Results of the
crossover and mutation operators are depicted. (b) SMILES line representation of the three molecules. Distinction is made between
skeleton and branched groups in brackets. SMILES strings are manipulated (rewritten, segmented) with respect to chemical and
SMILES line notation rules. Several, but fastidious, string analyses and combinations lead to the resulting chemical structures.
(c) Fragment-based representation is a linear one. Although combinations are more restrict, generated molecules are various and
the space of structures is large enough for our purpose. The cyclization mutation operator is ineffective in this case, since we are
not able to modify a fragment.
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unique fused two-ring systems are more numerous in
the drug database, probably reflecting a medicinal
chemistry bias (7.5% versus 5.3% in biodatabase) except
for the 6-6 atoms nonaromatic system (3.6% in drugs
and 3.9% in biomolecules).

Moreover, the drug database contains more unique
single ring systems (12.6% of 7621) than the biodatabase
(10.3% of 7282). Finally, the drug database contains
more unique acyclic groups than the biodatabase (32.7%
and 20.5% respectively).

Broadly, both CMC and KEGG databases highly
contribute to the final, merged fragment database. Most
of their fragments are different. Drug molecules provide
more diversity in single ring and acyclic fragments and
biomolecules provide more diversity in fused ring sys-
tems (three and above). We obtained 2778 different

scaffolds (ring family) from the CMC drugs and 2642
from the KEGG biomolecules.

Our final fragment library contains 7986 categorized
fragments stored in MDL sdf (Standard Derwent File)
format upon one conformation. Each fragment keeps
information about its original substitutions by possess-
ing an “X” dummy atom at these positions (Figure 3).
In this way, we respect the substitution pattern of the
fragment and, if necessary, we can retrieve the original,
parent molecule from CMC and KEGG databases.

For the purpose of the linear combination of frag-
ments, we distinguished fragments that can be substi-
tuted at least twice from those which can be substituted
only once (see Figure 4a). Thus, a fragment is either
classified “e” (end) or “f” type. An e fragment is a
fragment with only one substitution point (only one X

Figure 3. Two examples of segmentation. Molecules are dissociated into ring systems, fused-ring systems, and acyclic parts.
Generated fragments keep the substitution pattern of the original molecule by replacing substituents by “X” dummy atoms.

Table 1. 3D Fragment Database Was Extracted from Both 7621 Known Drugs (CMC) and 7282 Biological Compounds (KEGG)

fragments

fragment classes CMC KEGG distincta eb fc

single ring
three atoms 24 (0.31%) 21 (0.28%) 29 6 123
four atoms 23 (0.3%) 7 (0.09%) 26 6 115
five atoms 294 (3.8%) 225 (3%) 411 84 2138*
unsaturated, five atoms 104 (1.3%) 59 (0.8%) 112 28 424
six atoms 414 (5.4%) 375 (5.1%) 647 92 5354*
aromatic, six atoms 80 (1%) 51 (0.7%) 85 9 793
seven atoms 21 (0.27%) 13 (0.17%) 30 11 142
eight atoms 5 (0.06%) 4 (0.05%) 8 3 24

two fused rings 166 (2.2%) 135 (1.8%) 262 40 1517*
six and five atoms 191 (2.5%) 151 (2%) 305 71 1396*
aromatic, six and five atoms 137 (1.8%) 60 (0.82%) 152 38 544*
six and six atoms 279 (3.6%) 287 (3.9%) 485 69 3423*
aromatic, six and six atoms 83 (1%) 51 (0.7%) 104 11 730*

three or four fused rings 795 (10.4%) 832 (11.4%) 1446 179 12988*
five and more fused rings 162 (2.1%) 371 (5%) 495 25 6126*
acyclic parts

15-20 atoms 1342 (17.6%) 699 (9.6%) 1665 1028 1631**
1-15 atoms 142 (1.8%) 105 (1.4%) 166 96 165*
>20 atoms 1012 (13.2%) 696 (9.5%) 1558 966 1936**

total number of fragments 5274 4142 7986 2762 39569
a Refers to distinct fragments after merging CMC and KEGG distinct fragments. b e is a fragment that can only bind to a single fragment

(only one substitution point). c f is a fragment that has more than one substitution point. Due to the combinatorial explosion of pairs
(Figure 4), we sometimes set the maximum number of combinations at 5 (*) or at 10 (**) for each fragment.
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dummy atom) and f fragments are the others (multiple
substitution points). In the context of a linear combina-
tion, fragments must possess one (e fragment) or two
tags (f fragment) that indicate which atoms have to be
bonded with another fragment. The “left” and “right”
tags are the number of the atoms that bonds the
previous X dummy atom. If a fragment possesses more
than one substitution point, then a combination of pairs
of tags is generated including the symmetric one (Figure
4b). This information is stored in the data block of the
sdf file of the fragment. Thus, one fragment can be
registered more than once but with different tags.
Permanent tags are important to get reproducible
molecules. Finally, we obtained a fragment library of
39 569 building blocks (see Table 1).

Fitness Function. There are many different classes
of information that can play an important role in
focusing the search space: first, the knowledge about
known compounds that interact with the receptor and
which exhibit some of the needed molecular properties
and, second, the knowledge about the receptor structure.
When the structure of the target protein is known,
receptor-based computational methods can be employed.
This information helps to streamline the search in the
huge molecule space. Currently, LEA3D handles the
output of the docking program FlexX (version 1.13.1)
in order to perform a structure-based drug design
process. This is another significant difference with the
previous program LEA. By using LEA3D, FlexX output
solutions are filtered in order to extract solutions that
possess a docking score better than the user-defined one.
Then, only one representative per binding mode is
selected. The one with the best docking score and which
is in the user-defined vicinity of the active site is kept.
The user may also define several protein-ligand inter-
action constraints that the molecule must have with the
receptor. In this way, we can focus our search on
molecules that possess these crucial interactions. The

docking score is defined as follow:

where p is the docking property and -60 is the optimal
value of the FlexX score (the aim). FlexX_Scorei is
negative or set at 0. The lower the score, the better the
docking score.

The global fitness value of a molecule is given by
combining its single scores of various molecular proper-
ties (molecular weight, number of atoms, surface area,
presence of a defined function, etc.; see Figure 5) and
FlexX docking. The composite fitness, in percentage
terms, for an individual i generated by LEA3D is

Wp is the user-defined weight applied to the property
p (the sum is taken over all the selected properties). The
weights depend on the relative importance of the
properties the user considered. But an alternative would
set these weights on the basis of a previous QSAR
analysis if a linear correlation exists.

Protein Specificity. Docking on related proteins of
the target receptor may be necessary in order to predict
potential side-effects.35 For this purpose, LEA3D offers
a structure-based drug design on many proteins (up to
10). Logic operators are applied for searching specific
molecules (operator NOT), for creating several niches
in the population (operator OR) or for creating molecules
which have to bind two targets at the same time
(operator AND).

Selection Method. The first generation operates on
a population of randomly generated or user-defined
molecules. Molecules are then evaluated by fitness

Figure 4. Fragment characteristics. (a) In a fragment-based
representation, molecules are a combination of “e” fragments
and “f” fragments. An e fragment is only used as the first or
the last fragment to be combined. These fragments had only
one substituent in their original molecule. They possess only
one “X” dummy atom. An f fragment may be present at any
position in the linear representation. An f’ fragment possess
a “left” tag and a “right” tag, which indicate how to combine
this fragment with another one. The tag indicates the number
of the atom which bonds the X dummy atom. (*) The right tag
of a defined fragment (here number 50) will be bonded to the
left tag of the following fragment (here number 4) and so on.
(b) Our linear representation forces us to generate combina-
torial pairs of tags as well as the symmetric ones.

Figure 5. List of available molecular properties. *Calculation
using the program NSC V2.0 by Eisenhaber F.52 §Calculation
using Ghose and Crippen atomic contribution method.53

Amine1 refers to a primary amine, amine2 refers to a second-
ary amine, amine3 refers to a tertiary amine, and amine refers
to any type of amine. Alcohol1 refers to a primary alcohol,
alcohol2 refers to a secondary alcohol, alcohol3 refers to a
tertiary alcohol, and alcohol refers to any type of alcohol.

Scorei,(p)docking) ) -
FlexX_Scorei

60
(1)

Scorei ) ∑p Wp × Scoreip (2)

LEA3D: A Computer-Aided Ligand Design Journal of Medicinal Chemistry, 2005, Vol. 48, No. 7 2461



function. For creating the next-generation population,
molecules are selected from the mating pool of the
current population using roulette wheel selection. This
is a method for selecting the parents most fit to breed
the next generation. The standardized score (Scorei(std))
is scaling in a selection value (SVi), which is the sector
size of the roulette wheel (Figure 6). The fitness of each
individual in the population is modified during the
course of the run by fitness scaling. The scaling process
helps to maintain competition by shrinking the differ-
ences between scores.

As the run goes on, the selection pressure increases
in order to force the convergence near the end of the
optimization. The interval called “Range” is the differ-
ence between “Max” and “Min”, two user-defined values
that are set for the scaling process (see Figure 6). Range
is increased along the run by the following equation

with

where Progress is set from 0.0 to 1.0 (0.0 at generation
0 and 1.0 at the generation g_max). g_max is the user-
defined maximum number of generations in the run and
g is the current number of generation. In the present
calculation, Range will be multiplied by 2 from genera-
tion 0 to generation g_max.

Generating A New Population. A new population
is created by performing crossover and mutation opera-
tions on the selected parent molecules.

Crossover selection is determined by a user-defined
probability as well as the mutation one. Crossover is a
mechanism for recombining two molecules to form two
new molecules that preserve some of the characteristics
of their parents. Crossover is applied every generation.
Two types of crossover are performed: the one-point
crossover combines a terminal portion (one or more
building blocks) of a molecule with a similar terminal
portion from another molecule. The two-point crossover
involves the excision of an internal portion of a molecule.
Then, the excised portion is inserted into a molecule that
has a similar removed region. Thus, this operator may
only be applied on molecules that combine at least three
building blocks (Figure 7).

The second genetic operator is mutation. The present
operator possesses five variations. Their selection is
determined by a defined probability. This combination

of mutations allows an extremely variable series of
molecular structures to be evolved: permutation, dele-
tion, addition, and substitution. The mutation operator
is applied after the crossover process. Either, it mutates
the two new combined (breeding) molecules or it mu-
tates the two parents if crossover failed (Figure 7b).

Parent selection and operator processes are applied
until the whole new population contains, at least, the
same number of molecules as the parent one. At
maximum, 2n molecules are created if n is the number
of molecules in the parent population. Then, the genera-
tion replacement involves a total or partial selection of
the breeding candidates that replace the old parent
population. However, an elitism strategy is applied. The
best molecule in the parent generation is copied to the
new generation without alteration.36 This ensures that
the best solution is never lost.

Termination. The algorithm is terminated after a
prespecified number of generations. The fitness conver-
gence criteria is ensured by the selection pressure
discussed above. A parametrization study similar to the
previous one performed with LEA showed that 100
generations along with a population of 40 individuals,
an elitism strategy, and a fitness scale of 2-5 are
optimal to efficiently optimize our molecules and thereby
avoid a premature convergence.22

Results

TMPKmt. TMPK represents a promising target for
developing new antituberculosis drugs.37,38 It belongs
to the NMPK family and is responsible for the reversible
phosphorylation of deoxythymidine-5′-monophosphate
(dTMP) to deoxythymidine-5′-diphosphate (dTDP) using
ATP as its preferred phosphoryl donor. The dTMP
binding site was the target for ligand design in this
project (see Figure 8a,b). The holo structure of the
protein with the dTMP has been determined by X-ray
crystallography (PDB structure 1G3U).37 The structure
is composed of nine R-helices surrounding a five-
stranded â-sheet core. The active site includes the usual
P-loop (a phosphate binding loop) and LID region (a
highly flexible stretch of residues covering the ATP
binding site).

A previous analysis helped us to understand what
would be the key interactions between the substrate and
the active site.38-43 The thymine base of dTMP is deeply
buried by interacting with a conserved Arg74 and with
Asn100 as well as with a water molecule (HOH1002).
The latter is interesting, since TMPK of other organisms
possesses a glutamine that mimics this water molecule.
The active site of the TMPKmt is slightly bigger. The
sugar-phosphate moiety is less buried in the active site
and interacts with Arg95, Asp9, Tyr39, a magnesium
ion, and a water molecule. We assume that the main
interactions occur at the back of the active site.

TMPKmt Representation. The active site was
defined as a sphere of a radius of 10 Å around the
substrate dTMP. Prior to starting the drug design
process, it is necessary to assess that the representation
of the active site is correct and that FlexX can reproduce
the correct binding mode observed in the crystal-
lographic complex. As seen in Figure 8c, the predicted
binding mode from FlexX has a root-mean-square of 0.8
Å with the crystallographic structure. The main differ-

Figure 6. The fitness scaling is made upon standardized
scores. The mean value of scores will have a selection value
equal to the medium of the range [Min - Max]. This scaling
lowers the difference between scores and gives less fitted
candidates a higher chance to be selected.

Range ) Range + [ Progress × Range] (3)

Progress ) 1 - [ g_max - g ]/g_max (4)
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ences take place at the flexible phosphate part of the
molecule. However, to obtain a correct representation,
we have to keep one water molecule (HOH1002 in PDB
structure 1G3U), which interacts with the substrate and
Tyr165. Hydrogens were added on this water molecule
in order to correctly form a hydrogen bond with the
oxygen O2 of the substrate. The magnesium ion (MG300
in PDB structure 1G3U) is also important to maintain
the flexible phosphate part close to the crystallographic
position, but its presence is not essential for the correct
binding mode of the thymine fragment.

Search for Ribose Substitute. In the search of
thymine analogues, we focused on the replacement of
the sugar-phosphate moiety. We decided to keep the
thymine base moiety to take advantage of the conserva-
tion of the key interactions with the substrate observed
in the complex. We constrained each molecule created
by LEA3D to contain a thymine building block. More-
over, the thymine building block was also the main base
fragment that FlexX uses to start the construction of
the whole molecule. Thereafter, we asked FlexX to
superimpose the created molecules onto the crystal-
lographic reference of the thymine base by subgraph
matching. This has the advantage of speeding up the
docking calculation. We omitted the magnesium ion in
order to have a bigger active site and because it is

apparent that it is bound after the binding of dTMP.44,45

However, the water molecule 1002 was still used to
interact with the thymine base.

LEA3D was undertaken to search for analogues with
a new sugar part using the FlexX docking program as
the fitness function alone (no molecular properties
requested).

Runs were set for 100 generations and the population
size was 10 molecules per generation. The scaling
process was set with the value of 2 for Min and a value
of 5 for Max. The selection pressure was used. The
number of fragments a molecule may combine was
unconstrainted but, by default, is limiting to 5. Each
molecule was optimized, and three ring conformers were
accepted when they exist. More than three conformers
would slow the calculation. Several runs have been
carried out. Solutions were visually inspected and
removed when they interacted spuriously or when the
chemical accessibility was difficult.

We identified that the sugar part of the dTMP can
be replaced by a substituted benzyl group (Chart 1 and
Figure 9). Compound 1 (Chart 1) possesses a benzyl
group substituted by a 3-propionamide chain. The alkyl
chain makes an elbow in order that the carboxamide
group interacts with Asp9 and Tyr39, two residues

Figure 7. Molecule generation. (a) Creation of two molecules composed by two fragments (referred by a number). Each fragment
possesses one or more X dummy atoms that refer to potential substitution points. However, in our fragment library, each fragment
is associated with preselected tags in order to get reproducible molecules (X atoms with a square). These preselected X dummy
atom are linked to create the molecule. During this step, all X dummy atoms are replaced by hydrogens, but the data block of the
sdf file of the created molecule still contains the number of the unsubstituted positions (other X dummy atoms). (b) Crossovers
and mutations on two molecules. The population size is two; thus, the crossover operation must be applied twice. In the present
figure, a one-point crossover combines one fragment from molecule 1 to one fragment from molecule 2 (molecule 3 and molecule
5). The remaining fragments are also combined (molecule 4 and molecule 6). Four new molecules are generated. Then, mutations
are applied on each new molecule and lead to four new final molecules. However, only the two best molecules (according to the
user-defined fitness function) will be kept and will replace the parent population (molecule 1 and 2).
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involved into the reaction pathway of TMPKmt. The
FlexX score of 1 is close to the dTMP one (Table 2).

Prior to the synthesis of 1, we undertook a substruc-
ture search of easily accessible analogues in the ACD

(Available Chemicals Directory 2003.1) commercial
database (MDL Information Systems) (Chart 1). The
substructure search was carried out using the combina-
tion of the two scaffolds (uracyl base and benzyl group).

Figure 8. Active site of the TMPKmt. (a) Structure of the substrate dTMP with its numbering scheme. (b) Active site of TMPKmt
in complex with its substrate dTMP (PDB structure 1G3U). Two water molecules (W in magenta) are included as well as the
magnesium ion (green ball). The hydrogen-bond network is depicted in yellow. It involves the anchoring of the base moiety by 4
hydrogen bonds with Arg74 (two bonds), Asn100, and a water molecule. In addition, the thymine base is able to form a significant
π-stack with the benzene ring of Phe70. The 5-methyl group of dTMP has been proved crucial for the activity. It correctly fills the
cavity and probably endows the correct orientation of the sugar moiety of the dTMP molecule. The 3′-hydroxyl of the sugar moiety
is interacting with Asp9 and a water molecule. The 5′-O-phosphate group interacts with Arg95, Tyr 39, and a water molecule as
well as coordinating the magnesium ion. (c) Superposition of the crystallographic dTMP (in orange) with the predicted binding
mode (in blue) using FlexX docking program. The rms between the two structures is 0.8 Å.

Chart 1. Structures of Molecules That Were Selected and Purchased (12 and 13) or Synthesized (3-11)
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A set of 133 commercially available compounds was
retrieved for virtual screening using the FlexX docking
program. Among them, two compounds (12 and 13) were
purchased and nine compounds (3-11) were synthe-
sized according to classical methodology (synthesis will
be described elsewhere) in order to possess a substituent
(usually a methyl) at position 5 on the uracyl base. The
aim was to assess whether the sugar portion can be
replaced by a benzyl moiety without detrimental effect.
The inhibitory potency of these compounds was tested
on TMPKmt by enzymatic assay (Table 2). Except
compound 5, they are all inhibitors of TMPKmt with Ki
values ranging from 38 to 980 µM. Compound 11 shows
an unexpected efficiency for a rather nude molecule.
Results confirm that a methyl or bromine at position 5
on the pyrimidine moiety improves the affinity of the
molecule as previously observed (3 and 4).46 Introduc-
tion of bromine in position 4 of the benzyl ring enhances
the affinity of the compound 11, probably by a better
steric fit of this group. Finally, we observed that the
FlexX scores do not correlate with the measured activ-
ity, including its failure to highlight differences between

substituents such as fluorine, bromine, and methyl (5,
4, and 3 respectively). Although the affinities of these
compounds were weaker than the one of the natural
substrate dTMP, these results were promising enough
to follow up the synthesis of derivatives of the previously
designed 1.

Ten molecules were derived and synthesized upon the
structure of 1 (Chart 2 and Table 2). Compound 1 has
a weak inhibitory potency of 110 µM. The inhibition is
improved with a 3-propionic acid chain (2, Ki ) 68 µM).
The asset of 2 upon 1 is probably the carboxylate charge
able to balance the positively charged environment of
the LID. A previous crystallographic study shows that
the Asp 9 is correctly ordered only after the binding of
the magnesium ion.45 But, 1 probably prevents the
binding of this ion and, thus, probably prevents the
predicted interaction with Asp9.

The best hit among this series is compound 21 with
a Ki of 12.3 µM. The potency of the molecules 20 (16.5
µM) and 21 are better than the one of dT (27 µM).
Compounds 20 and 21 are predicted to balance the
Arg95 positive charge as shown by the substrate dTMP
(see Figure 9). As mentioned above, a 5-bromine (21)
improves the affinity. So far, the best length of the
spacer arm between the benzyl and the carboxylic acid
is apparently three carbons (20, Ki ) 16.5 µM and FlexX
score ) -39) compared to two carbons (2, Ki ) 68 µM
and FlexX score ) -32) or five carbons (22, Ki ) 32 µM
and FlexX score ) -51). FlexX scores correctly reflect
the difference of activity for 20 and 2 but not for 20 and
22. Nevertheless, we noticed that the predicted binding
mode of 22 was spurious despite its high score. Appar-
ently, the spacer arm is too long to correctly promote
an interaction between the carboxylate function and
Arg95. On the contrary, a molecule that would possess
four carbons as spacer arm is predicted to have a higher
affinity (FlexX score ) -45). The predicted binding
mode is close for 20, 21, and the four-carbon compound.
The differences are the width of the elbow and the
hydrogen-bond capability between the carboxylate func-
tion and Arg95. Two hydrogen bonds are predicted
between the carboxylate of the four-carbon derivative

Figure 9. (a) The predict binding mode of molecule 20. This molecule is able to form five hydrogen bonds as well as a significant
π-stack with the benzene ring of Phe70. Compared with Figure 8, the thymine base loses one hydrogen-bond interaction with
Arg74. The carboxylate group is able to interact with Arg95 by balancing its negative charge. (c) Superposition between the
substrate dTMP and molecule 20.

Table 2. FlexX Scores and Inhibitory Potencies of Compounds
1-22

TMPKmt TMPKmt

compd
FlexX
scorea Ki (µM) compd

FlexX
scorea Ki (µM)

dTMP -31 (-37b) Km ) 4.5 11 -31 38
dT -29 (-30b) 27 12 -31 980
1 -36 110 13 -30 810
2 -32 68 14 -38 240
3 -31 75 15 -32 NIc

4 -31 44 16 -33 NI
5 -31 NI 17 -31 NI
6 -31 45 18 -32 NI
7 -31 90 19 -31 265
8 -31 67 20 -39 16.5
9 -31 50 21 -38 12.3
10 -30 44 22 -51 32

a The water molecule HOH1002 (in PDB file 1G3U) is included
during the docking by FlexX. b Refers for cases in which the
magnesium ion is also included during the docking process. c NI:
no inhibition detected.
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and Arg95, one hydrogen bond between the carboxylate
of 20 and Arg95, and none between the carboxylate of
2 and Arg95. The synthesis of the four-carbon derivative
is currently in progress.

Discussion

We have described LEA3D, a new structure-based
drug design program aimed at identifying novel struc-
tures that are predicted to fit the active site of a target
protein. As illustrated in the described example, the
association of LEA3D and the FlexX docking program
permits the identification of a new family of thymine
derivatives as inhibitors of TMPKmt. The methodology
is particularly suitable for rapid identification of chemi-
cally accessible, druglike fragments that can be rapidly
translated into potent lead compounds. Currently, we
used a building block library that contains approxi-
mately 8000 fragments. But, if the user has some special
requests, the building block library could be extended
by the addition of new fragments. This can be easily
done due to the organization of the library in a simple
and open form. This design protocol, when coupled with
a commercial database such as ACD, chemical intuition
with regard to chemical stability, and synthetic ease,
can lead to a great number of novel ligand candidates.
A manual optimization may lead to a final generation
of molecules.

Our strategy combining de novo drug design, sub-
structure searches of the ACD, virtual screening, and
experimental methods such as chemistry and enzymatic
assays is close to the SHAPES method, developed at
Vertex Pharmaceuticals.33 The SHAPES strategy uses
nuclear magnetic resonance (NMR) screening of a
library of small druglike molecules with various comple-
mentary methods such as virtual screening, high
throughput-screening (HTS), and combinatorial chem-

istry. Their strategy successfully produced submicro-
molar classes of compounds for the Jnk3 MAP Kinase.

By using LEA3D, it is also possible to combine prior
knowledge concerning a particular binding site (for
example, known binding mode) with the ligand design
protocol by requesting a specific interaction known to
exist or by selecting directions of growth through the
use of partially grown molecules as restart fragments.
One advantage of the design methodology presented in
this paper is the ability to take into account for specific-
ity by combining multiple target-docking scores as the
fitness scoring function. This multiple target docking,
at one time, is faster than the sequential docking
process. In the present case, we undertook further
LEA3D design upon the substructure of molecule 20.
We hope to improve its affinity for TMPKmt by growing
and by promoting additional interactions, and we hope
to find some selectivity versus the human homologue
(TMPKh, PDB structure 1E2F).45,47 Some new ana-
logues have yet to be designed (structures not shown).
They possess interesting interactions with TMPKmt
that are close to those observed for the dTMP and they
are predicted not to bind the TMPKh by promoting
steric hindrances and by interfering with a salt bridge
described as crucial for the activity of this protein46 (see
Figure 10). These results are still predictions, but we
are currently pursuing this line of development.

Improvement of the evaluation of the energy of
interaction would be another crucial issue, to provide a
quantitative score directly related to the activity. In the
present case, optimizing the substituents on the benzyl
moiety would need a more precise scoring function to
estimate binding affinities of different side chains and,
thereby, better rank the FlexX docking solutions. In-
deed, FlexX can identify structures that can bind into
the TMPKmt active site, but it presents some difficulties

Chart 2. Molecules Designed by LEA3D

a Eleven structures derived from 1 have been synthesized (2, 14-22).
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to properly rank the solutions according to their inhibi-
tion potencies. A previous study on known ligands of
TMPKmt reveals that FlexX succeeds in highlighting
the more putative binders but without a correct rank
(data not shown). These difficulties are well-known for
scoring functions used in protein-small molecule dock-
ing methods.48-50 Potential extensions to de novo ligand
design using LEA3D may include an improvement of
the prediction of the docking score either by using a
physical-based scoring function such as CHARMM51 or
by using a consensus score resulting from the usage of
several scoring functions or maybe different docking
programs.

Experimental Section
Fragment Library. Molecules from the CMC and KEGG

databases (sdf file format) have been dissociated into frag-
ments that are classified into 18 families (eight single ring
families, seven fused-ring families, and three acyclic families;
Table 1). The fragment library generation is performed as
follows.

First, salts of the database are dissociated. Then, three-
dimensional structures are generated by the program CORINA
(only one conformer). Molecules containing heavy metals or
without 3D coordinates are discarded. Additional constraints
may be added if needed: no phosphorus atom, a limited
number of asymmetric carbons, possessing the “rule-of-five”
of Lipinski or not, containing a “reactive group” (for example,
aldehyde, isocyanate, nitrosamine, R-halocarbonyl, thiosulfate,
hydrazine, oxime ester, epoxyde, aziridine). Finally, carboxy-
late and phosphate groups are ionized.

A program has been developed to dissect each molecule (sdf
format). First, single ring systems are detected and duplicates
are removed. Then, fused ring systems are identified: an
association of single ring systems that share a bond. Rings
are fused and removed from the single ring system list.
Duplicates are also discarded. Single ring systems up to 10
atoms are identified. Above the limit of 10 atoms, single ring
systems are excluded. In the present study, the CMC database
contains only 86 molecules that are out of our limit. Acyclic
parts encompass linkers and terminal substituants containing
more than two atoms. Rings, fused rings, and acyclic parts
are then classified in many classes (Table 1) depending on the
aromaticity and the number of atoms. Finally, duplicates in
each class are removed.

In Table 1, the number of unique fragments generated is
given for each class and each database with a percentage

related to the number of molecules in the original database
(7621 and 7282 molecules for CMC and KEGG, respectively).
Finally, 5274 and 4142 distinct fragments have been generated
upon the CMC and KEGG databases, respectively. The union
of the two fragment libraries results into a final fragment
library that contains 7986 unique fragments that have been
categorized into two subfamillies: the “e” fragments and the
“f” fragments.

For the purpose of the linear combination of fragments, we
distinguished fragments that can be substituted at least twice
from those that can be substituted only once (see Figure 4a).
Thus, a fragment is either classified e (end) or f type. An e
fragment is a fragment with only one substitution point (only
one “X” dummy atom), and f fragments are the others (multiple
substitution points). In the context of a linear combination,
fragments must possess one (e fragment) or two tags (f
fragment) that indicate which atoms have to be bonded with
another fragment. The “left” and “right” tags correspond to
the number of the atom that bonds the previous “X” dummy
atom. If a fragment possesses more than one substitution
point, then a combination of pairs of tags is generated
including the symmetric one (Figure 4b). Due to the combi-
natorial explosion of pairs, we sometimes set the maximum
number of combinations at 5 (referenced by * in Table 1) or at
10 (referenced by ** in Table 1) for each fragment. Combina-
tions are sequentially generated following the number of the
atoms in increasing order, without any distance criteria; the
5th or 10th first generated combinations are kept, and then
the symmetric combinations are added. The tag information
is stored in the data block of the sdf file of the fragment. Thus,
one fragment can be registered more than once but with
different tags. Permanent tags are important to get reproduc-
ible molecules. Finally, we obtained a fragment library of
39 569 building blocks (see Table 1).

TMPKmt in Vitro Assays. TMPKmt assays were done
using the coupled spectrophotometric assay described by
Blondin et al.54 at 334 nm in an Eppendorf ECOM 6122
photometer. The reaction medium (0.5 mL final volume)
contained 50 mM Tris-HCl pH 7.4, 50 mM KCl, 2 mM MgCl2,
0.2 mM NADH, 1 mM phosphoenol pyruvate, and 2 units each
of lactate dehydrogenase, pyruvate kinase, and nucleoside
diphosphate kinase. The concentrations of ATP and dTMP
were kept constant at 0.5 and 0.05 mM, respectively, whereas
the concentrations of compounds varied between 0.1 and 2.9
mM. Ki values were calculated46 by assuming the different
compounds to be competitive inhibitors.
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